Chapter 15
Microbial Mechanisms of Pathogenicity

Identify the principal portals of entry.
- Mucous membranes (respiratory, gastrointestinal, genitourinary, conjunctiva)
- Skin (follicles, sweat gland ducts)
- Parenteral route (punctures, injections, bites, cuts, wounds, surgery, splitting of skin)
- Respiratory tract – most common portal of entry
- Many organisms only cause infections when access their specific portal of entry

Table 15.1 Portals of Entry for the Pathogens of Some Common Diseases (continued)

<table>
<thead>
<tr>
<th>Portal of Entry</th>
<th>Pathogen</th>
<th>Disease</th>
<th>Incubation Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucous Membranes</td>
<td>Haemophilus influenzae</td>
<td>Respiratory tract</td>
<td>0-10 days</td>
</tr>
<tr>
<td>Skin or Parenteral</td>
<td>Staphylococcus aureus</td>
<td>Skin infections</td>
<td>2-3 days</td>
</tr>
<tr>
<td>Skin or Parenteral</td>
<td>Escherichia coli</td>
<td>Urinary tract infections</td>
<td>1-5 days</td>
</tr>
</tbody>
</table>

*All pathogens are bacteria, unless indicated otherwise. For viruses, the host species and/or genus name is given.

Numbers of Invading Microbes

Define LD50 and ID50.

- **Virulence:**
 - ID50: Infectious dose for 50% of the test population
 - LD50: Lethal dose (of a toxin) for 50% of the test population
Bacillus anthracis

<table>
<thead>
<tr>
<th>Portal of entry</th>
<th>ID$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>10-50 endospores</td>
</tr>
<tr>
<td>Inhalation</td>
<td>10,000-20,000 endospores</td>
</tr>
<tr>
<td>Ingestion</td>
<td>250,000-1,000,000 endospores</td>
</tr>
</tbody>
</table>

Adherence

Using examples, explain how microbes adhere to host cells.

- Adhesions/ligands (surface projections) bind to receptors on host cells
 - Glycocalyx (protective casing) *Streptococcus mutans*
 - Fimbriae *E. coli*
 - M protein (virulence) *Streptococcus pyogenes*
 - Opa protein *Neisseria gonorrhoeae*
 - Tapered end *Treponema pallidum*
- Biofilms – masses of microbes that can attach to living and nonliving surfaces (dental plaque, shower door scum)

Enzymes

Adherence

- Coagulase
 - Coagulate blood (protect local infection in clot)
- Kinases
 - Digest fibrin clots (spread from focal infection)
- Hyaluronidase
 - Hydrolyses hyaluronic acid that holds cells together
- Collagenase
 - Hydrolyzes collagen (connective tissue)
- IgA proteases
 - Destroy IgA antibodies
- Siderophores
 - Take iron from host iron-binding proteins
- Antigenic variation
 - Alter surface proteins, avoiding antibodies

Antigenic variation

Define and give an example of antigenic variation.

- Some pathogens can alter their surface antigens to avoid attack from host’s antibodies
 - Influenza
 - Gonorrhea
 - African sleeping sickness

Describe how bacteria use the host cell’s cytoplasm to enter the cell.

- Microbes produce surface proteins (invasins) that rearrange nearby actin filaments of the cytoskeleton of the host cell (microfilaments, microtubules)
- *Salmonella* (next slide)
Siderophores

Describe the function of siderophores.

- To obtain free iron, which is normally tightly bound, some pathogens secrete proteins called siderophores which remove iron from iron-transport proteins.

Toxins

Provide an example of direct damages, and compare this to toxin production.

- Direct damage – as pathogens metabolize and multiply in a cell, the cells often rupture (lyse)
- Toxin Poisonous substances that contribute to pathogenicity
- Toxigenicity Ability to produce a toxin
- Toxemia Presence of toxin in the host's blood
- Toxoid Inactivated toxin used in a vaccine
- Antitoxin Antibodies against a specific toxin

Endotoxin

Contrast the nature and effects of exotoxins and endotoxins.

Exotoxins

- Small
- Yes
- Neutradized by antitoxin
- No
- LD50: Relatively large

Endotoxins

- Large
- No
- Neutradized by antitoxin
- Yes
- LD50: Relatively large
Exotoxins

- A-B toxins or type III toxins (diphtheria)

- Membrane-disrupting toxins or type II toxins
 - Lyse host’s cells by:
 - Making protein channels in the plasma membrane (e.g., leukocidins, hemolysins)
 - Disrupting phospholipid bilayer
 - Plasmids may carry genes for antibiotic resistance, toxins, capsules, and fimbriae
 - Lysogenic conversion (new properties due to lysogenic phage) can result in bacteria with virulence factors, such as toxins or capsules

- Superantigens or type I toxins
 - Cause an intense immune response due to release of cytokines from host cells
 - Fever, nausea, vomiting, diarrhea, shock, death

<table>
<thead>
<tr>
<th>Exotoxin</th>
<th>Lysogenic conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corynebacterium diphtheriae</td>
<td>A-B toxin. Inhibits protein synthesis. +</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>Membrane-disrupting. Erythrogenic. +</td>
</tr>
<tr>
<td>Clostridium botulinum</td>
<td>A-B toxin. Neurotoxin +</td>
</tr>
<tr>
<td>C. tetani</td>
<td>A-B toxin. Neurotoxin +</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>A-B toxin. Enterotoxin +</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Superantigen. Enterotoxin +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 15.2: Diseases Caused by Exotoxins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exotoxin</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Botulism</td>
</tr>
<tr>
<td>Staphylococci aureus</td>
</tr>
<tr>
<td>Staphylococci carriers</td>
</tr>
</tbody>
</table>

Bacteria	Enterotoxin
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

Bacterial source	Enterotoxin
Staphylococci aureus | Enterotoxin |
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

Chemistry	Enterotoxin
Staphylococci aureus | Enterotoxin |
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

Microscopic effect on body	Enterotoxin
Staphylococci aureus | Enterotoxin |
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

Neurotoxin	Enterotoxin
Staphylococci aureus | Enterotoxin |
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

Toxicity to cause death	Enterotoxin
Staphylococci aureus | Enterotoxin |
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

Immunity	Enterotoxin
Staphylococci aureus | Enterotoxin |
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

Infectious disease	Enterotoxin
Staphylococci aureus | Enterotoxin |
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

Susceptible host	Enterotoxin
Staphylococci aureus | Enterotoxin |
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

Diagnosis	Enterotoxin
Staphylococci aureus | Enterotoxin |
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

Treatment	Enterotoxin
Staphylococci aureus | Enterotoxin |
C. tetani | Enterotoxin |
V. cholerae | Enterotoxin |
C. botulinum | Neurotoxin |
C. diphtheriae | A-B toxin |
S. pyogenes | A-B toxin |

<table>
<thead>
<tr>
<th>Exotoxin and Endotoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Bacterial source</td>
</tr>
<tr>
<td>Chemotherapy</td>
</tr>
<tr>
<td>Neurological effect</td>
</tr>
<tr>
<td>Toxicity to cause death</td>
</tr>
<tr>
<td>Immunity</td>
</tr>
<tr>
<td>Infectious disease</td>
</tr>
<tr>
<td>Susceptible host</td>
</tr>
<tr>
<td>Diagnosis</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
</tbody>
</table>

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Endotoxins and pyrogenic (fever) response

- Endotoxins released by bacterial cell death, antibiotics, and antibodies
- Allow bacteria to cross blood-brain barrier
- LAL (Limulus ameobocyte lysate) assay used to detect endotoxins in drugs and on medical devices

Pathogenic Properties of Viruses

- Viruses avoid host’s immune system by growing inside cells
- Viruses gain access due to attachment sites for receptors on the host cell
- CPE – cytopathic effects that are visible
- Cytopathic effects include:
 - stopping mitosis
 - lysis
 - inclusion bodies
 - cell fusion
 - antigenic changes
 - chromosomal changes
 - transformations

Cytopathic Effects of Viruses

<table>
<thead>
<tr>
<th>Virus (Genus)</th>
<th>Cytopathic Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poliovirus</td>
<td>Cytopathic (cell death)</td>
</tr>
<tr>
<td>Poxovirus</td>
<td>Acidophilic inclusion bodies in nucleus</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>Basophilic inclusion bodies in nucleus</td>
</tr>
<tr>
<td>Hsvirus (family Herpesviridae)</td>
<td>Acidophilic inclusion bodies in cytoplasm</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>Acidophilic inclusion bodies in nucleus and cytoplasm</td>
</tr>
<tr>
<td>Measles virus (Morbillivirus)</td>
<td>Cell fusion</td>
</tr>
<tr>
<td>Polyomavirus</td>
<td>Transformation</td>
</tr>
<tr>
<td>HIV (Lentivirus)</td>
<td>Destruction of T cells</td>
</tr>
</tbody>
</table>

Pathogenic Properties of Fungi

Discuss the causes of symptoms in fungal, protozoan, helminthic, and algal diseases.

- Fungal symptoms caused by capsules, toxins, and allergic responses
- Fungal waste products may cause symptoms
- Chronic infections provoke an allergic response
- Tichothecene toxins inhibit protein synthesis
 - Fusarium
 - Proteases
 - Candida, Trichophyton
Pathogenic Properties of Fungi

- Capsule prevents phagocytosis
 - Cryptococcus
- Ergot toxin
 - Claviceps
- Aflatoxin
 - Aspergillus
- Mycotoxins
 - Neurotoxins: Phalloidin, amanitin
 - Amanita

Pathogenic Properties of Protozoa

- Presence of protozoa
- Protozoan waste products may cause symptoms
- Avoid host defenses by
 - Growing in phagocytes
 - Antigenic variation (changing antigens)

Pathogenic Properties of Helminths

- Use host tissue
- Presence of parasite interferes with host function
- Parasite's metabolic waste can cause symptoms

Pathogenic Properties of Algae

- Neurotoxins produced by dinoflagellates
 - Saxitoxin
 - Paralytic shellfish poisoning
 - Can cause paralysis

Portals of Exit

Compare and contrast portal of entry and portal of exit.

- Respiratory tract
 - Coughing, sneezing
- Gastrointestinal tract
 - Feces, saliva
- Genitourinary tract
 - Urine, vaginal secretions
- Skin
- Blood
- Biting arthropods, needles/syringes

Mechanisms of Pathogenicity